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Abstract-It is known from experiments that when a plate, made of a material belonging to a restricted class
of elastic-perfectly plastic materials, is subjected to a uniform tensile stress along opposite edges, yielding
begins with the formation of Liiders bands. Recent research also shows that if the load is maintained, the
bands grow and gradually penetrate the elastic zones.

The study presented here develops a theory for both the formation of the Liiders bands and for the
phenomenon of the growth of the plastic zones at the expense of the elastic. No restriction is placed upon
Poisson's ratio, though the incompressible material is studied as a special case. We find that for each value of
Poisson's ratio there are two possible angles of inclination of the bands. We also establish that when the
plastic zone begins to grow for a compressible material the boundary of the plastic zone need not be straight
but thaIthe normal vector of this boundary is contained within certain bounds. We also find that the normal
velocity at which a point on the boundary propagates depends both on the direction of propagation and 00

Poisson's ratio.

INTRODUCTION

It is known that for a restricted class of materials, within the general family known as
elastic-perfectly plastic materials, yielding in tensile specimens begins when lines or thin bands of
slip occur which are inclined to the direction of the applied load. These are the well known
Liiders bands. Their formation is attributed to instabilities arising in materials which display an
upper yield limit and whose stress level drops somewhat following this initial yield. In the study
described here a plate made of a material belonging to this restricted class is subjected to a simple
tensile load on opposite edges.

The first part of this study will be directed to establishing the theoretical basis for the
formation of Liiders bands, their predicted angle of inclination, and how this angle of inclination
changes with changes in Poisson's ratio.

It is also known from experiments that, following the formation of a band, the band will
slowly enlarge if the load is maintained. The boundaries of a plastic zone gradually penetrate the
elastic domain between bands.

The second part of the paper is a study of the boundary of a plastic zone and the velocity with
which it propagates into the elastic domain. It is interesting to find in this study that the velocity
with which the boundary of the plastic zone propagates is dependent both on the direction of
propagation and on Poisson's ratio.

Neither of the two problems is entirely new; indeed both have been studied by T. Y. Thomas.
In his first research into the inclination of Liiders bands[l], Thomas studied a material that is
incompressible, that is a material whose Poisson's ratio is one half. In his analysis he used the
notion of singular surfaces. Using both the von Mises and Tresca yield criteria, he found the
single inclination angle slip to be 35°16' measured from the line which is perpendicular to the
direction of the applied tension. In a second study [2] Thomas relaxed the restriction of
incompressibility and investigated the influence of Poisson's ratio on the angle of inclination. He
used the constitutive equations due to Henky which, due to their structure, admit a displacement
formulation of the problem. He again used both the von Mises and Tresca yield conditions and
for each criterion found two slip angles corresponding to each Poisson's ratio.
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In our study of the inclination of Liiders lines we use, as did Thomas, the notion of singular
surfaces, but in other respects our development differs somewhat from that of Thomas. We
choose to model the material using the PrandtI-Reuss equations rather than those of Henky and
use only the von Mises yield criterion. The material we study can have any Poisson's ratio which
includes the incompressible as a limiting case. We also find two inclination angles for each value
of Poisson's ratio. The first of the two angles for each material is the same as the first of Thomas,
whereas the second angle found in our work is different from the second of Thomas. It is not
clear why Liiders lines with the second inclination angle have not been observed experimentally.

In his first study [1] Thomas began an investigation of the growth of the plastic zone.
However, he restricted his study to a material that is incompressible. Characterizing the plate as
an elastic-perfectly plastic Prandtl-Reuss material, he found that the boundaries of the plastic
zone can propagate in only two directions, namely in the direction of the applied tension and in
the direction perpendicular to it.

In the second part of this paper we study the same problem except that we allow the material
to be compressible. We also use the elastic-perfectly plastic Prandtl-Reuss constitutive
equations. We find that an incompressible material forms a special case and also, as Thomas did,
that the boundaries of the plastic zone propagate either in the direction of the applied tension, or
perpendicular to it.

In our study we find that when the material is compressible the boundary of the plastic zone
need not be straight. The outward normal vector of the boundary, however, is established as
being between certain bounds. The direction of propagation of this boundary, is found to be
independent of Poisson's ratio and can vary between two lines inclined at angles of 90° and 35°06'
to the direction of the applied tension. A significant finding in our study of the plastic zone
concerns the velocity with which the boundary of the zone propagates. We find that this velocity
depends both on the direction of propagation and on Poisson's ratio. To gain insight into the
influence of Poisson's ratio on the velocity we dictate that propagation will take place in the
direction of the Liiders lines, a direction that is admitted by the bounds, and calculate the velocity
of propagation for a range of Poisson's ratios between O·t and 0·4.

It is encouraging in tight of these findings, to report on experiments conducted in the
Department of Material Science at the University of California at Berkeley on a thin plate of steel
that displays negligible strain hardening following yield. The experiments show, and record on
film, the formation of Liiders bands and the growth of the plastic zone following their formation.
It is clear from the film that different parts of boundary of the plastic zone propagate at different
velocities and that the velocity depends on the direction of propagation.

1. FORMULATION OF THE PROBLEMS

The plate under study has a thickness which is small compared to the other plate dimensions.
Boundaries involving the thickness will be called edges, the other boundaries the faces of the
plate. The load is applied as a uniform tensile stress T along opposite edges of the plate and it is
assumed that throughout the plate the stress is uniform through the thickness.

The magnitude of T is increased until the plate begins to yield. At yield, lines appear on the top
and bottom faces of the plate which represent the boundaries of a slip surface which penetrates
the thickness of the plate normal to the two faces. A portion of the plate is shown in Fig. t. The
lines AB and CD represent the intersection of slip surfaces with the face of the plate shown.

As a slip surface is treated in each of the two problems as a singular surface, we present here,
in the interest of completeness, a hrief set of descriptions and definitions to help explain this
concept.

When a function is enclosed in square brackets, i.e. [f], the implication is that the function
"f" suffers a finite discontinuity across a prescribed surface, which accordingly is called a
singular surface. We are concerned in this study with discontinuities of the velocity V" and, in
particular, with the singular surface across which the normal component of the velocity
discontinuity vanishes, i.e. where

[V;]n; = 0, (1.1 )

where ii is the unit normal vector of the singular surface. Such a discontinuity is called a slip
discontinuity. In equation (1.1) the repeated index. as usual, indicates summation. Physically.
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Fig. I, Aportion of plate with plastic slip bands initiated by auniform tensile load.

equation (1.1) implies that the penetration of the surface by the particles is not allowed so that the
discontinuity is due only to the slip of the material particles across the surface.

Such a surface of discontinuity is called a slip surface and once slipping begins we are
concerned further with the stability of the slip. As our interest here is in slip that is stable we
define a singular surface I as a surface of stability if every discontinuity [Vi] over I is damped out,
i.e. if

lim [Vd = o..-- (1.2)

This behavior can be a consequence of satisfying the equations governing the medium, the
boundary conditions and conditions of symmetry.

The material and its behavior, both elastic and plastic, are governed for both problems by the
following set of equations.

Equations oi motion:

(
aVI )

UII,I = P at" + V,.I Vi ,

conservation of mass:

dp _
dt +pVi,i - 0,

the Prandtl-Reuss constitutive equations:

the von Mises yield condition:

and the slip condition:

[Vdn, =0.

(1J)

(1.4)

(1.5)

(1.6)

(1.7)
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In equations (1.3-1.7), O'li'S are the components of the stress tensor, p is the mass density, O'rs
are the stress deviators defined by

where p == -jO'kk, and Eli are the components of the strain rate tensor

deli 1
£"1' ==-=-(y.. + y .. )dt 2 I,) I.' >

(1.8)

(1.9)

and E, p, and v are the modulus of elasticity, the shear modulus and Poisson's ratio respectively.
The quantity '" is given by

(1.10)

In the above equations subscripts after a comma denote partial differentiation with respect to
cartesian coordinates, i.e.

au;, av,
mi,i == -aI; V,,; =-a ; etc.

Xj X;

Use of the ordinary time derivative in place of the covariant time derivative[l, 3] appears to be
justified since rotational effects are observed to be of minor significance in our problem.

Because in the development of this study we shall make use of dynamic, geometric, and
kinematic conditions of compatibility of first order [1, 4, 5], which are valid over a singular surface,
they are as follows:

Dynamic conditions of compatibility:

[p( Vn - G)] =0; [0'1; ]n; =p( Vn - G)[ Vi]'

Geometric conditions of compatibility:

[Vi.;] = Ain; +g"P(Vd,,,XiP>

[O'ii,d = {link + g"p [0'0] ,,,XiII'

Kinematic conditions of compatibility:

[aO'/i] G a[at =- ~IJ +at O'Ij],

(1.11)

(1.12)

(1.13)

(1.14)

In all the conditions of compatibility, G is the normal component of the propagation velocity of
the singular surface I, Vn is the normal component of the particle veocity, g"/3 are the
contravariant components of the metric tensor of the surface, and the quantities Ai and §ii are
suitable functions defined over I by

, _ [a~]. l: _ [iJO'/l]
1\/= an ,~IJ= an .

Further XI/3'S stand for

where uP are the surface coordinates of I whose equation is given by
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Throughout the study the range of Greek indices a, {3, etc. will be 1 and 2, and that of Latin
indices i, j, k, etc. will be 1, 2, and 3. The c5 -time derivative which appears in equations (1.13) is
defined in [1].

For the two studies that follow, we find it convenient to use two right hand reference frames Xi

and Yj (see Fig. 1). The X coordinate system is placed so that the XI - X2 plane coincides with the
midplane of the plate and the X2 axis is in the direction of the applied tension. The y coordinate
system is obtained by a counterclockwise rotation of the X system about the X3 axis through an
angle (J such that the Y2 axis is perpendicular to the slip plane. Further we let the common origin
of the two frames be at the point 0 midway between the slip planes AB and CD.

2. INCLINATION OF SLIP PLANES

In this section all of the quantities will be referred to the Y coordinate system. The
components of stress and velocity will be designated aij and Vi on the plastic side of the slip
planes and will be unbarred on the elastic side.

We assume that the external load is applied as a uniformly distributed normal stress on the
loading edge and that the plate is large enough compared to the thickness so that we can neglect
the effect of the free edges. With these assumptions, the stress field is everywhere uniform
through the thickness.

When the stress is initially applied it creates the elastic stress field:

0'11 = T sin2
(J: 0'12 = T sin (J cos (J; 0'13 = O.

(2.1)

When the yield limit has been reached by increasing T, plastic flow begins by the formation of slip
planes; the magnitude of T at which yielding will begin is predicted by a yield condition. In this
study we use the von Mises yield condition. equation (1.6). which is appropriate for a tensorial
presentation. If the stress field in the elastic region. equation (2.1). is introduced into the von
Mises yield condition, the critical value of T is found to he

T =V3k. (2.2)

Following yielding the stresses in the flow region will, like the elastic stresses. be uniform through
the thickness so that the components aij of the stress tensor 0' will be of the form

(203)

When we recall that we have neglected the influence of the free edges, it is clear that the various
quantities which enter into the discussion of the problem, when evaluated on the slip plane, will
be independent of the yl coordinate. This circumstance leads to what we will call symmetry
conditions. For the problem under study they are

(2.4)

On the other hand, for our specific problem the slip condition, equation (1.7), when referred to y
system becomes

where

[Vi] = Vi - Vi.

Since on the elastic side of the slip plane V~ = 0, we get

(2.5)

If we take into account the fact that in our problem the singular surface I is stationary, i.e.
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G = 0, and further that the elastic side of ! is in equilibrium, i.e. the particle velocities Vi on the
elastic side vanish, the dynamic conditions of compatibility reduce to

where

V2 =O;[ah]=O, (2.6)

We note that the first of equations (2.6) is identical with the slip condition. The second of
equations (2.6) can be written as

an - an = O. (2.7)

Using plane stress conditions. equations (2.3), if we write the yield condition on the plastic side of
! we obtain

(2.8)

It is seen that, due to equation (2.7), this can also be written as

(2.9)

or

(2.·10)

in view of equations (2.1) and equations (2.2). From equation (2.10) it is also seen that a" is
constant, i.e.

da" = 0
dt .

On the other hand since ai2 = an = const., from equation (2.7), we should have

da22 = 0
dt .

(2.11)

(2.12)

When we write the constitutive equation, equation (1.5), for the plastic side of!; for i = I, j = I we

find

(2.13)

Further, on account of the symmetry conditions, equation (2.4), we also have

(2.14)

In view of equations (2.11), (2.12), (2.14), and the definition of p, equation (2.13) reduces to

If,iT~, = o.

There are two ways in which equation (2.15) can be satisfied:
(i) The first way is to have

which implies

Substitution of this expression for a" into the yield condition, equation (2.10), gives

~ cos· (J - 3 cos2
(J + 1 = 0,

(2.15)

(2.16)

(2.17)

(2.18)
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(2.19)

We now show that this angle of inclination of slip lines would occur if the material were
elastically incompressible. From the constitutive equation, equation (1.5), with the vanishing tTL
we have

or

By integrating this equation we get

(
6JL II _ 1) dp -., -
E dt - -JLEll.

( 6JL II 1) - 2-T- p == JLell,

(2.20)

(2.21)

(2.22)

for the initial stress·free material. But ell == al •l == 0 in view of the symmetry condition. Therefore

6;v_I == 0, or II == ~,

which characterizes an incompressible elastic material.
(ii) The second way of satisfying equation (2.15) is to have

substitution of which into equation (1.5) yields

(2.23)

(2.24)

(2.25)

This is a purely elastic constitutive equation and it implies that all of the strain rate
components vanish on the plastic side of the slip surface: Le. ill == O. However, it does not follow
from this equation that the components vanish elsewhere in the plastic zone. Indeed study of the
field equations reveals that (aiit/aY2) 'I O. This shows that not all of the components of the strain
rate tensor Ell vanish in the interior of the plastic band even though they are z.ero just inside the
slip surfaces.

If we integrate equation (2.25) we get

- 2 - 6JLII -~
ail == JLeij - T PUll, (2.26)

for the initial stress·free material. In view of the definition of "p", equation (2.26) can be written
as

(2.27)

For i == 1, j == 1, equation (2.27) becomes

(2.28)
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(2.29)

If we substitute the value of all from equation (2.29) into equation (2.10) we get

which is quadratic in cos2 8. Solutions of equation (2.30) are

2 1 1
cos 8 =-1-'-2-'+ v -v

(2.30)

(2.31)

Equation (2.31) suggests that corresponding to any value of Poisson's ratio there exist two
inclination angles, say 81 and 82, for slip bands. Here we note that equation (2.31) holds for the
entire range of II. Hence we write

2 1 2 1
cos 81 =1+v;cOS 82=2_v'

The values of the angles 81 and 82 are listed in Table 1.

Table 1.

°1 '2

0,000 ± 0° .:: 45"

0.100 " 17' 33' .': 43::- 32 '

0.200 ± 24' 6 ' ~ 41' 50 1

0.300 ± 23' 43 ' , 39':'> 55 '

0,400 ± 32' 19 ' = 37' 48'

0,500 ± 35' 16 ' t 35" 16 '

(2.32)

The effect of compressibility on the inclination of plastic slip bands has been investigated by
Thomas [2] using Hencky constitutive equations, which, due to their structure admit a
displacement formulation for the problem. In his formulation he used both von Mises and Tresca
yield conditions and found also two slip angles corresponding to each Poisson's ratio. Our study
differs from that of Thomas in that we use the Prandtl-Reuss equations together with von Mises
yield criterion rather than that of Hencky. The inclination angle 81 found in this study, equation
(2.32) and Table 1, is the same as the first inclination angle obtained by Thomas. based on von
Mises yield criterion whereas the angle 82 found in our work is somewhat different from the
second inclination angle found by Thomas.

Slip along lines inclined at the angle 81, has been observed experimentally, but it is not clear
why slip along 82 lines has not. One of the differences in the two slip planes is established as
follows:

Using equations (2.1) and equation (2.29) for 8 = 81 we see that

(2.33)

On the other hand in view of equation (2.7) we also have a/2 = U;2. Therefore we conclude that

[Uijl = 0, (2.34)

which implies that the stress tensor is continuous over I when 8 = 81• However, in a similar way it
can be shown that [Uij] ¥ 0 on I for 8 = 82,

3. PROPAGATION OF THE PLASTIC ZONE

We have found in the previous section that when our plate is subjected to uniform tension,
yielding is first manifest as lines of slip called Liiders bands, within which the material is
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plastically deformed. We are now concerned with changes that take place in the plate, following
this initial yielding, when the edge forces are maintained.

The development which follows is based on two postulates. The first is that we can treat the
plate as if it were homogeneous even though the bands form domains of inhomogeniety. The
second is that, when the tensile stress is maintained following the beginning of yield, the plastic
zone will gradually extend from the sides Of the band and penetrate into the elastic domain
between bands. We learn the nature of the boundary between the two zones, the velocity with
which this boundary propagates and the parameters that influence both.

In this section we refer all of the quantities to the x coordinate system. Figure 2 shows P as
the boundary between the plastic zone ABCD and the two elastic zones CDHE and ABFK. At a
point on the boundary the unit normal vector is nextending from the plastic to the elastic side.
The normal component of the velocity with which the boundary is moving at this point has the
magnitude G.

"

"

Elastic

Fig. 2. Propagation of plastic zone into elastic region in a pltrte subjected to a uniform tensile load.

We begin with a study of the dynamic conditions of compatability, equations (1.11). When
applied to the surface P they can be written

pG= p(G - Vn ),

(3.1)

We ass~me that the boundary I* emerges from the Liiders band which is inclined at the angle
81, We make the further assumption, based on the conclusion derived at the end of the last section,
that the stress tensor is continuous across I*. Using this assumption of continuity and the fact that
G # 0, we note from the second of equations (3.1) that,

[V;j = o. (3.2)

Hence the velocity is also continuous over the surface I*. As Vn =0, it follows from equation (3.2)
that Vn = O. Therefore from the first of equations (3.1) we have p = p, i.e.

[p] = o. (3.3)
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Because of the continuity of O'ij, Vi, and p over I* the geometric and kinematic conditions of
compatibility reduce to

[aVI]at = -GA;,

(3.4)

where Ai and ~iJ are defined in equations (1.14). In writing equations (3.4) we assumed that I* is a
singular surface of order one, which implies that not all of the quantities Ai and ~jj vanish over
I* [1].

We write the equations of motion on both sides of I* and take the difference, and in view of
equation (3.2). we find

(3.5)

If we take into account the fact that the elastic side of I* is in equilibrium, i.e. Vj = 0, and if we
use equations (3.4), this equation reduces to

(3.6)

In the same way we write the Prandtl-Reuss equation. equation (1.5), on both sides of I* and take
the difference, which gives

(3.7)

Using equations (3.4), (1.9) and (3.2), equations (3.7) become

(3.8)

From equation (1.10) and from the continuity of 0'1j we can get

(3.9)

On the other hand, if we use equations (3.4) and the definition of "p", to compute the jump of

(3.10)

across I*, we find

(3.11)

Substitution of equations (3.9) and equation (3.11) into equation (3.8) yields

(3.12)

when use is made of equation (2.2).
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We now make use of the fact that our problem is one of plane stress. It follows from equation
(1.14) that ~13 = 0 and from equation (3.6) that A3 = O. Substitution in equation (3.12) and
expanding the last term will give

(3.13)

Substitution of equation (3.13) into equation (3.12) gives

(3.14)

Putting i = a(a = 1,2) and j = 3in the equation (3.14) and using plane stress conditions we get

(3.15)

which implies

(3.16)

By multiplying equation (3.14) by nl and sum over j and using equation (3.6) we obtain

When we let i = j = 3 in equation (3.14) and solve for ~kk we get

(3.18)

again exploiting plane stress. We now substitute equation (3.18) into (3.17) to obtain

(3.19)

For i =3, equation (3.19) is satisfied identically, substitution of i = 1 and i =2 leads to

(3.20)

respectively. Equations (3.20) can be written in the matrix form

(3.21)

Equation (3.21) represents an eigenvalue problem in which the velocity G is an eigenvalue, and AI
and A2 are the components of the eigenvector. For a nontrivial solution, the determinant of the
coefficient matrix must vanish. This circumstance leads to the equation

(3.22)

When the direction of propagation is specified, equation (3.22) determines the velocities with
which the plastic region propagates into the elastic zones. When we make use of the fact that
nl

2 +n2
2 = 1, equation (3.22) can be written in terms of the single component nl as

(3.23)
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Noting that equation (3.23) is a quadratic equation in G2
, the roots can be written

(3.24)

As the velocities G must be real, the values of G2 must be both real and positive. The roots will
be real if

(3.25)

It can be shown that the inequality, equation (3.25), is satisfied for all values of 0,,;;; n I ,,;;; 1. Further
the roots will be positive only when

(3.26)

The inequality, equation (3.26), will be satisfied if nl = 0 or nl;;' I/Vi Therefore, the velocity G
will be real only when

(3.27)

We now consider both of these cases:
(i) nl =O. When n. =0, n=X2 which means that the boundary surface is normal to the

direction of the applied stress and that propagation is in the direction of the applied stress. To
study the conditions that lead to this case we substitute nI = 0 in equation (3.24) and find that

(3.28)

The corresponding eigenvectors are

(3.29)

respectively. The first solution, which is the only meaningful one, has already been shown to
result when the material is incompressible. This is the result already established by Thomas [1].

(ii) n. = 1, the upper bound of nl. For this case n2 =0, n= XI, so that the boundary is parallel
to the direction of the applied stress and the direction of propagation is perpendicular to it.

When we substitute nl = 1 in equation (3.24) we find

(3.30)

The corresponding eigenvectors are

(3.31)

respectively. The first solution

corresponds as before to the incompressible case.
(iii) nl =Vi73, the lower bound of nl. When nl = 1/V3, n2 =Yill so that n=

V(l/3)x. +v'(2/3)X2' This establishes the direction of propagation for this bound as being along a
line inclined at 35°06' to the direction of the applied tension.

For the second case, the material, except at one bound is compressible. To study the influence
on the velocity of propagation of changes in Poisson's ratio we study the particular case where
propagation is parallel to the first inclination angle 81, The value of nl, dictated by this choice falls
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Table 2.

IJ 8, G,2 G,'

0·1 17"33' 2·056p.!p 0·765p.!p
0·2 24"06' 2·055p.!p 0·605p.!p
0·3 28°43' 2·050p.!p 0·490p.!p
0·4 32°19' 2·025p.!p 0·405p.!p

within the bounds of the second case given by equation (3.27). As Poisson's ratio changes, so does
8t, then nt, resulting in changes in G/ and G/ from equation (3.24). The influence of Poisson's
ratio on the propagation velocities is shown in Table 2.
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